My Account: Log In | Join | Renew
1st Page

Crop Science : Just Published


Accepted, edited articles are published here after author proofing to provide rapid publication and better access to the newest crop science research. Articles are compiled into bimonthly issues at, which includes the complete archive. Citation | Articles posted here are considered published and may be cited by the doi.

Example: Lorenz, A.J., T.J. Gustafson, J.G. Coors, and N. de Leon. 2009. Breeding Maize for a Bioeconomy: A Literature Survey Examining Harvest Index and Stover Yield and Their Relationship to Grain Yield. Crop Sci., doi: 10.2135/cropsci2009.02.0086.

Abstracts are available to all; full text articles require a subscription.

Already a subscriber but having trouble accessing the full-text articles? Contact for help with individual subscriptions and for help with institutional subscriptions.

Current issue: Crop Sci. 55(3)


    • M.J. Morrison, E.R. Cober, J.A. Frégeau-Reid and P. Seguin
      Changes in Lutein and Tocopherol Concentrations in Soybean Cultivars Released Across Seven Decades in the Short-Season Region

      Lutein and α-tocopherol (α-toc) are antioxidant compounds beneficial for human health. Soybean [Glycine max (L). Merr.] contains relatively high concentrations of these compounds, and increasing them through plant breeding may be beneficial to human nutrition as well as provide a marketable seed trait in food-type soybean. Our objective was to determine if there have been changes in lutein and tocopherol concentrations in short-season soybean cultivars. (continued)

      Published: February 3, 2015


    • Tadele T. Kumssa, P.S. Baenziger, M.N. Rouse, M. Guttieri, I. Dweikat, G. Brown-Guedira, S. Williamson, R.A. Graybosch, S.N. Wegulo, A.J. Lorenz and J. Poland
      Characterization of Stem Rust Resistance in Wheat Cultivar Gage

      Wheat (Triticum spp.) stem rust, caused by Puccinia graminis f. sp. tritici Eriks. and E. (continued)

      Published: February 3, 2015

    • Keith Rincker, Randall Nelson, James Specht, David Sleper, Troy Cary, Silvia R. Cianzio, Shaun Casteel, Shawn Conley, Pengyin Chen, Vince Davis, Carolyn Fox, George Graef, Chad Godsey, David Holshouser, Guo-Liang Jiang, Stella K. Kantartzi, William Kenworthy, Chad Lee, Rouf Mian, Leah McHale, Seth Naeve, James Orf, Vaino Poysa, William Schapaugh, Grover Shannon, Robert Uniatowski, Dechun Wang and Brian Diers
      Genetic Improvement of U.S. Soybean in Maturity Groups II, III, and IV

      Soybean improvement via plant breeding has been critical for the success of the crop. The objective of this study was to quantify genetic change in yield and other traits that occurred during the past 80 yr of North American soybean breeding in Maturity Groups (MGs) II, III, and IV. Historic sets of 60 MG II, 59 MG III, and 49 MG IV soybean cultivars, released from 1923 to 2008, were evaluated in field trials conducted in 17 U.S. states and one Canadian province during 2010 to 2011. (continued)

      Published: April 28, 2014


    • Claire H. Luby, Jack Kloppenburg, Thomas E. Michaels and Irwin L. Goldman
      Enhancing Freedom to Operate for Plant Breeders and Farmers through Open Source Plant Breeding

      The Open Source Seed Initiative (OSSI) ( seeks to address the dramatic transition over the past 100 yr in how plant germplasm is distributed, developed, and released: from a freely available resource primarily located in the public sector to proprietary structures managed largely by the private sector. OSSI was developed by a group of plant breeders, farmers, seed companies, nonprofit organizations, and policymakers with the goal of promoting and maintaining open access to plant genetic resources worldwide. OSSI seeks to provide an alternative to pervasive intellectual property rights agreements that restrict freedom to use plant germplasm through the development and promulgation of a Pledge which is intended both to raise awareness of these issues and to ensure that germplasm can be freely exchanged now and into the future. In this paper we discuss the historical forces and trends that have led to various types of biological and intellectual property protections and how this has potentially limited plant breeders’ “freedom to operate” and farmers’ sovereignty over seed. (continued)

      Published: March 27, 2015


    • Christine H. Diepenbrock and Michael A. Gore
      Closing the Divide between Human Nutrition and Plant Breeding

      Improvement of crop nutritional quality through breeding, termed biofortification, is a strategy being used to address micronutrient deficiencies worldwide. These efforts stand to benefit tremendously from recent advances across the plant sciences, from flourishing germplasm and genomic resources and phenotyping tools to improved characterization at the levels of physiology, cell biology, and gene expression. Next steps in crop biofortification in this decade and beyond include adapting high-throughput phenotyping platforms for measurement of nutritional quality traits, testing genome-wide and other DNA marker-based selection strategies that can mine parsimonious answers from large data sets, and further characterizing genotype × environment interactions and post-harvest effects on end nutrition. Also necessary are accompanying considerations of yield and other agronomic traits—in particular, the non-uniform responses of both these and quality traits to climate change across crops, environments, and farming management systems. (continued)

      Published: December 16, 2014

    • Kassa Semagn, Yoseph Beyene, Raman Babu, Sudha Nair, Manje Gowda, Biswanath Das, Amsal Tarekegne, Stephen Mugo, George Mahuku, Mosisa Worku, Marilyn L. Warburton, Mike Olsen and B. M. Prasanna
      Quantitative Trait Loci Mapping and Molecular Breeding for Developing Stress Resilient Maize for Sub-Saharan Africa

      The International Maize and Wheat Improvement Center (CIMMYT), in partnership with several public and private institutions, is working to develop and deploy improved maize (Zea mays L.) germplasm that is drought tolerant, nitrogen use efficient (NUE), and disease resistant for sub-Saharan Africa (SSA), using conventional pedigree selection and molecular breeding. Here, we provide an overview of the progress made on (i) quantitative trait loci (QTL) analysis for drought, NUE, and maize lethal necrosis (MLN); (ii) development of production markers for maize streak virus (MSV) and MLN resistance; and (iii) marker-assisted recurrent selection (MARS) and genomic selection (GS) for developing drought tolerant maize germplasm. We identified several small to moderate effect QTL associated with grain yield and anthesis-silking interval under low N, managed drought, and optimum environments, but only a few small to moderate effect QTL were detected in multiple genetic backgrounds. Thus, CIMMYT is conducting the largest public MARS and GS projects in SSA. (continued)

      Published: December 5, 2014


    • B. Shaun Bushman, Scott E. Warnke, Keenan L. Amundsen, Kathleen M. Combs and Paul G. Johnson
      Molecular Markers Highlight Variation within and among Kentucky Bluegrass Varieties and Accessions

      Assessing relationships among germplasm and cultivars of Kentucky bluegrass (Poa pratensis L.) is limited to field evaluations or a small set of molecular markers. To improve the efficiency of characterizing Kentucky bluegrass cultivars and germplasm, this study was designed to develop a larger set of robust molecular makers and a concise panel of cultivars to assess relationships of Kentucky bluegrass. An extensive library of simple sequence repeat markers was developed and used to assess relationships among and within 24 cultivars and accessions. Plants generally grouped as cultivars in cluster analysis, but molecular outlying plants and phenotypic off-type plants were found in 15 of the entries. (continued)

      Published: February 7, 2014

  • Facebook   Twitter