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The objective of this study of the North Ridge of Everest was to examine trace element concen-
trations and altitudinal trends in soil and snow. Mount Everest was selected because its remote 
location and extreme elevation isolates it from localized pollution sources. Soil samples were col-
lected on the Rongbuk glacier of Mount Everest (Qomolangma) from 5334 to 6553 m, and fresh 
surface snow samples (0–10 cm) were collected along the climbing route of the northeast ridge 
from 6858 m to 7752 m. The samples were analyzed for Pb, Zn, Cd, Ni, Cr, Co, Cu, As, Mn, Hg, 
and V using inductively coupled plasma spectroscopy. Results show that As and Cd are both 
above USEPA drinking water guidelines in all snow samples, and arsenic is above the USEPA soil 
screening guidelines in all soil samples. There was a clear trend in element variation in the soil 
samples, with the highest concentrations found at 5944 m. There was no clear trend detected in 
the snow samples, possibly due to vertical mixing of surface snow. Anthropogenic sources are 
suspected to have contributed to the elevated concentrations of both cadmium and arsenic.
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Due to its rapid increase in industrialization, Asia is currently the 

greatest contributor of atmospheric anthropogenic pollutants in 

the world (Pacyna and Pacyna, 2001). The combustion of fossil fuels 

(Cr, Ni, Sb) and gasoline (Pb) and the production of nonferrous metals 

(Cu, Zn, As, Sd) contribute the bulk of trace metals to the atmosphere as 

Asia increases its gross domestic product (Pacyna et al., 2007; Pacyna 

and Pacyna, 2001). The scope and range of this deposition is not pre-

cisely known, but it is believed that trace elements in the troposphere 

can be transported more than 2500 km (Marx et al., 2004). Mount Ever-

est’s (Qomolangma) extension into the remote troposphere, above the 

boundary layer (the demarcation between lower elevations influenced by 

localized pollution and the unaffected region (atmosphere) above) posi-

tions it to receive deposition from these anthropogenic sources and 

provides researchers the ideal setting to examine the quantity and type 

of trace element deposition.

Nearly 20% of the Earth’s surface is comprised of mountains that 

provide a valuable surface water storage reservoir and vital resource 

for millions of humans, including the Tibetans and Nepalis living below 

Everest (USEPA, 2008). It is estimated that approximately one-tenth of 

the world’s population relies heavily on fresh water from snowpack in 

alpine regions, reinforcing the importance of a deeper understanding of 

elemental concentrations in atmospheric deposition at high elevations 

(USEPA, 2008). Mount Everest’s (27°59¢N, 86°55¢E, 8844 m) remote set-

ting far from industry, extension into the troposphere, and intermediate 

location between northern China and India provide an exceptional lab-

oratory for the study of atmospheric deposition and chemistry. Trace 

metal concentrations in fresh snow on the north (Lee et al., 2008; Kang 

et al., 2007, 2004, 2002) and south slopes of Everest (Marinoni et al., 

2001) have been evaluated, as well as on adjacent Himalayan moun-

tains (Balerna et al., 2003; Shrestha et al., 1997; Mayewski and Lyons, 

1983) and at remote sites in Alaska, Antarctica, Norway, Japan, Europe, 

and New Zealand (Douglas and Sturm, 2004; Ikegawa et al., 1999; Nor-

wegian Institute for Air Research, 2008; Hou et al., 2005; Walker et al., 

2003; Marx et al., 2004). Some studies have found that primary anthro-

pogenic (Cd, Zn, Pb) trace metal concentrations in fresh snow on Mount 

Everest are lower than detected in large cities, such as Hong Kong, and 

that other trace metals in Everest surface snow (Zn, Mn, Cu, As, V, and 

Cr) have low concentrations that closely mirror remote sites such as Ant-

arctica (Kang et al., 2007). This suggests that Everest is not affected by 

anthropogenic pollution (Kang et al., 2007; Marinoni et al., 2001). How-

ever, a recent study of fresh snow samples from the North Ridge of 

Everest contradicts these findings, with trace element concentrations 

that are three and four magnitudes higher than Antarctica (Lee et al., 

2008), suggesting that snow on Everest has been polluted by anthropo-

genic sources.

The determination of the provenance of trace elements is a very 

complex process because deposition is often a composite of multiple 

sources (Marx et al., 2004). Snow chemistry on the northern slopes of 

Everest is influenced by desert dust from central Asia (Lee et al., 2008; 

Kang et al., 2007; Balerna et al., 2003), while the southern slopes are 

relatively free from this deposition (Marinoni et al., 2001). Research has 

suggested that the bulk of trace metals in surface snow on Mount Ever-

est are derived from crustal aerosols from adjacent rocks in addition 

to dust storms (Kang et al., 2007), but recent research utilized a crustal 
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Plateau (Wang et al., 2007), and on the Rongbuk glacier at the foot of 

Mount Everest (Zhang et al., 2006).

The objective of this study of the North Ridge of Everest was to 

examine trace element concentrations and altitudinal trends in soil and 

snow. This vertical analysis will provide a more complete understanding 

of the immediate and cumulative trace element concentrations above the 

boundary layer and provide insight to the scope and range of pollution.

Site Description
Mount Qomolangma (Everest) is located on the border of Nepal and 

China (Fig. 1). This study was conducted on the northern slope of Qomo-

langma, northeast of the town of Zhaxizong in Tingri county Tibet. The 

Tibetan plateau consists of arid alpine grassland vegetation, average ele-

vation 4500 m, with an average annual precipitation of 3.2 cm (Zhang et 

al., 2006). Shrubs are randomly dispersed throughout the study site and 

are the dominate vegetation below approximately 5800 m (the tree line).

Soil samples were collected every 305 m between 5334 and 6553 

m in the 8-km2 glacial moraine of the Rongbuk glacier, and replicate 

samples were collected every 305 m above through the east Rongbuk 

glacier, a deep valley flanked by massive walls of dark crushed glacial till 

that winds in and out of penitentes (Fig. 2). The soil in this region is gen-

erally undisturbed, and no form of agriculture existed anywhere near 

the sample collection locations. Surface soil on the Tibetan plateau is 

routinely redistributed by winds with an annual mean speed of 4.4 m/s 

(Zhang et al., 2006) and on the Rongbuk glacier during the pre-monsoon 

season can average 7.5 m/s (Kang et al., 2007).

The snow samples were collected every 305 m between 6858 and 

7772 m, on a steep exposed face that is interspersed with crevasses 

and hanging seracs and extends upward to the North Col. This face 

was predominantly ice on the lower slopes until the last week of May 

(2006) when the sun intensified. Samples were collected on the exposed 

ridge (7144 m) of the North Col, a site that leads to the upper reaches 

of Qomolangma (7448 m) to the northeast and the summit of Changtse 

(7752 m) to the west. The potential of vertical mixing of snow exists at 

these altitudes, but the distance between samples should be far enough 

to yield comparable data. The snow samples were collected from dif-

ferent aspects of the mountain because collection sites were limited to 

the direction of the ridge; thus the deposi-

tion could be influenced by prevailing winds. 

Samples collected above the North Col 

could yield very different results because 

this location is not blocked by the imposing 

North Col wall or anything else in the world.

Methods
Replicate soil samples were collected in 

sterile Whirl-Pak (Nasco, Fort Atkinson, WI) 

containers on May 13, 2006, using standard 

methods (Soil Survey Division Staff, 1993). 

Surface snow samples (0–10 cm) were col-

lected on May 8, 10, and 11, 2006 in sterile, 

acid-cleaned, high density polyethylene 

HDPE (Nalgene, Thermo Fisher Scientific, 

Waltham, MA) containers. During sample 

collection extreme care was taken to mini-

mize contamination.

enrichment factor (Wedepohl, 1995; Qureshi, 2001) to determine the 

contribution of crustal aerosols and found they were insignificant com-

pared to the amount of deposition from anthropogenic sources (Lee et 

al., 2008). Studies have suggested that precipitation rates in alpine envi-

ronments are strongly correlated with trace metal deposition levels and 

could be the primary source of trace metal fallout in mountain environ-

ments (Zechmeister, 2004). During the pre-monsoon season Everest 

receives very little precipitation because of its location beside the arid 

Tibetan Plateau, and the bulk of deposition arrives from long-range west-

ern sources (Lee et al., 2008). Concentrations of trace elements are 

higher in the pre-monsoon season than in the post-monsoon season 

(Lee et al., 2008; Kang et al., 2007).

Little is known about the potential for trace elements to become more 

concentrated at specific altitudes. Some studies have found no obvi-

ous trends in trace element accumulation with altitude and believe it is 

unlikely due to mixing of surface snow by relentless winds and potential 

inputs from crustal aerosols. This determination was made through the 

examination of 14 snow samples collected from the North Ridge of Ever-

est in which no clear altitudinal trend for elemental variation was found 

(Kang et al., 2007). Surface snow samples from an adjacent mountain, 

Cho Oyu, also didn’t exhibit any elemental trends with altitude, but only 

three sample locations were used (Balerna et al., 2003).

Knowledge of trace metal contents of soils and snow is important 

because in labile forms there is potential for migration into the ecosys-

tem, including food and water sources (Navas and Lindhorfer, 2005). 

The negative impact of trace metal toxicity to humans is widespread and 

well understood. Trace elements in urban and suburban soils have been 

studied extensively (Langley-Turnbaugh and Belanger, 2007; Langley-

Turnbaugh and Evans, 2001; Steinnes et al., 1997), and numerous studies 

have focused on mountain environments (Wang et al., 2007; Navas and 

Lindhorfer, 2005; Evans et al., 2004; Walker et al., 2003; Moyse and Fer-

nandez, 1987; Reiners et al., 1975), but there has been limited study of 

the Aridisols of Mount Everest. Trace metal analysis of soils on north-

eastern United States mountains in New Hampshire were conducted 

(Reiners et al., 1975), and elevated levels of Pb and Zn were said to be in 

the range of roadside soils. This study suggested there was an increase 

in deposition as altitude increased, as was found in other alpine soil trace 

metal studies in the European Alps (Zechmeister, 2004), on the Tibetan 

Fig. 1. Location map of Mount Everest. Fig. 2. Satellite image of Everest and North Col 
Ridge route. Samples of snow and soil were 
collected on this route.
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Arsenic has long been associated with bladder, kidney, and skin 

cancers, with a biological half-life of about 4 d (Buchet et al., 1981) to 

8 d (Pomroy et al., 1980) in the human body and up to a month in skin, 

esophagus, tongue, stomach and oral cavity (Vahter et al., 1982) before 

excretion by urine. Cadmium is classified as a probable human carcino-

gen (USEPA, 1992) associated with lung and prostate cancer through 

Soil samples were dried, ground, and sieved, and 

snow samples were stabilized after collection with 

trace metal grade nitric acid. All samples were ana-

lyzed for Cd, Ni, Zn, Cr, Co, Cu, As, Mg, Hg, V, and 

Pb. Soil samples were digested using USEPA Method 

3051b, a nitric acid microwave digestion method 

(USEPA, 1995), and all samples were quantified using 

ICP–AES following USEPA Method 6010 (USEPA, 

1996). The limit of detection for most elements was 

10 mg/L. A standard reference material (NIST Soil 

Standard SRM 2711, Montana Soil) was inserted into 

the sampling stream carried through the digestions, 

extractions, and analysis as part of the quality assur-

ance protocol. Duplicates and reagent blanks were 

also used to ensure accuracy and precision in the 

analysis. Results were analyzed for patterns in trace 

element concentration with elevation.

Results
Snow

The average concentrations of As at all eleva-

tions exceeded the USEPA’s maximum contaminant 

level (MCL) of 10 ng/g for drinking water (Table 1, Fig. 

3). The lowest concentration of As, 10.9 ng/g, was 

detected at 7144 m, and the highest concentration of 

23.6 ng/g was detected at 7448 m (Fig. 3). Cadmium 

also exceeded the USEPA’s MCL of 5 ng/g for drink-

ing water, with the lowest average concentration of 

5.2 ng/g at 6858 m and the highest concentration of 

6.8 ng/g at 7752 m. Cadmium and Zn concentrations 

increased with increasing altitude. Lead, Co, and Hg 

were all below detection limits.

Soil
The highest concentrations of Ni, Cr, Co, Mn, 

and V in Everest soil were at 5944 m (Table 1, Fig. 4). 

Copper and As levels contradicted this trend, with the 

highest concentrations at 5639 and 6553 m, respec-

tively. Arsenic concentrations in soil were above 

critical limits (USEPA) at all altitudes, with the lowest 

concentration of 12.2 mg/kg at 5639 m and the high-

est, 49.3 mg/kg, at 6553 m. Cadmium concentrations 

were below detection limits.

Discussion
Snow

Elevated concentrations of Cd and As at 7144 m indi-

cate that between May 5 and 7, 2006 a deposition event 

took place through a significant snowstorm. Elevated Cd 

and As concentrations detected in fresh snow on May 10 

and 11, 2006 at 7752 m, 7448 m, and 6858 m were from 

another snow event accompanied by heavy winds that 

struck Everest on the May 9, 2006. Because climbers consume approxi-

mately 6 to 8 L of water a day for an average of 6 d while camping at the 

North Col and above, there is potential for Cd and As to accumulate in 

climbers after ingesting melted snow (Pomroy et al., 1980).

Table 1. USEPA levels for soil and water.

 
USEPA water 
guidelines†

Everest  
snow

USEPA soil 
guidelines‡

Everest  
soil

————————————— ng/g ———————————— —————————————— mg/kg —————————
As 10 12.3–23.6 10 12.4–49.9 
Cd 5 5.2–6.8 27 ND§
Co NA¶ ND NA 2.7–11.5 
Cr 100 3.0–4.4 950 6.8–24.8 
Cu 1300 3.4–8.7 650 9.1–33.5 
Hg 2 ND 60 ND
Mn NA 3.1–8.75 NA 109.1–339.8 
Ni NA 0.6–3.3 3800 4.5–18.8 
Pb 15 0.1 375 1.4–29.9 
Zn 5000 35.9–76.2 1500 0–95.9 

† USEPA maximum contaminant level for drinking water (USEPA, 2006a).
‡ Remedial action guidelines for contaminated soils (Maine Department of Environmental Protection, 

1996; USEPA, 2006b).
§ ND, no detection.
¶ NA, not available.

Fig. 3. Changes in trace element concentration with elevation in Everest snow.

Fig. 4. Changes in trace element concentration with elevation in Everest soil.
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inhalation and ingestion of food and water (Armstrong and Kazantzis, 

1983; Sorahan & Waterhouse, 1983). Arsenic and Cd deposition in Asia 

is the result of nonferrous metal production and the combustion of fossil 

fuels (Pacyna and Pacyna, 2001). In Tibet, samples from the Dasuopu 

Glacier (6700 m) on Mount Xixiabangama, adjacent to Everest, indi-

cate that low temperature combustion of coal, particularly in the heating 

season, contribute to Himalayan deposition levels (Wang et al., 2008), 

and studies have shown that the combustion of coal introduces As to the 

atmosphere (Contreras et al., 2009). India combusts 335 million tons of 

coal annually to supply one-third of their energy requirements (Interna-

tional Energy Association, 2002). Arsenic and Cd deposition in remote 

areas have been associated with anthropogenic processes (Ikegawa et 

al., 1999; Cunningham and Zoller, 1981).

The trace element concentrations from this study are higher than 

those found in a study on the North Ridge of Everest in May 2005, which 

reported Cd below detection limits and As at 183 pg/g (Kang et al., 

2007). Another study conducted in the autumn of 2004 to spring 2005 of 

an excavated snow pit at 6575 m below the North Col on the North Ridge 

of Everest reported average concentrations of 5 pg/g for Cd and 83 pg/g 

for As (Lee et al., 2008), likely from anthropogenic sources since the con-

centrations exceeded potential rock and soil dust contributions. Because 

there are multiple factors that influence the provenance of deposition, 

including prevailing winds, precipitation patterns, and point source emis-

sions, each deposition event is different and can originate from various 

sources located in the western region of central Asia (Lee et al., 2008) or 

south from India (Wang et al., 2008). Since sources vary, so should depo-

sition levels in fresh snow samples collected from Everest. In addition, 

samples collected above the North Col could yield very different results 

because it is not blocked by the imposing North Col wall or anything else 

in the world.

It has also been shown that the pre-monsoon (May–July) conditions 

experienced during this study are more likely to yield elevated concen-

trations of trace elements compared to monsoon conditions (Lee et al., 

2008; Kang et al., 2007). Studies have shown that deposition in the Hima-

layas during the pre-monsoon season originates from anthropogenic 

sources in India (Valsecchi et al., 1999) or from western sources in cen-

tral Asia (Lee et al., 2008). It has been shown that anthropogenic sources 

directly influence deposition levels at remote sites such as Antarctica 

(Scarponi et al., 1997), and this finding was reinforced by several studies 

that found a rapid decrease in Pb immediately after its removal from gas-

oline (Evans et al., 2004).

In this study concentrations of Cd increased with altitude, from 5.2 

to 6.8 mg/g (Fig. 3). In high-altitude environments there is potential for 

wind to redistribute snow vertically and interfere with the development 

of demarcation zones between altitudes, although the 305-m difference 

between sample plots was enough for Cd to exhibit an increasing trend. 

It is unknown why this trend exists on Everest and reinforces the need for 

further study in the Himalayas and other remote high-altitude locations. 

Another comparable study (Kang et al., 2007) discovered that no trends 

existed in snow sampled on the North Ridge of Everest and concluded 

that influences from crustal aerosols or strong winds eliminated altitudi-

nal stratification.

A comprehensive study of annual precipitation amounts on Everest 

would help determine potential input of trace elements because stud-

ies have shown that precipitation rates are directly related to deposition 

quantities (Zechmeister, 2004). Snyder-Conn et al. (1997) suggested that 
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ciated with As in fuels used. Advanced base camp (6553 m) could have 

elevated levels of As due to input from the more than 1400 m of elevation 

above the site that could potentially intercept deposition that is even-

tually transferred to lower elevations. Base camp (5334 m) has more 

human traffic and more fossil fuel combustion due to cooking (propane, 

white gas, butane, kerosene, yak dung), generators, and vehicle access. 

It consists of an 8-km2 area that is not flanked by high walls that might 

trap pollution or potentially introduce crustal material as suspected at 

6553 m. In the future crustal enrichment factors may be used to compare 

the influence of natural background levels of rocks and Tibetan plateau 

dust to soil levels. Another potential source of Cd and As could be from 

volcanic activity (Gabrielli et al., 2005), which can be transported more 

than 2500 km in dust (Marx et al., 2004).

Conclusions
Two specific snowstorm events on Everest introduced elevated con-

centrations of As and Cd to fresh surface snow on the upper North Col. 

Soil samples collected from base camp (5334 m) to advanced base 

camp (6553 m) contained elevated concentrations of As that gradu-

ally increased with altitude. These findings indicate that further research 

needs to be done to determine the provenance of these metals and sug-

gests that individuals who are routinely exposed to this environment 

might consider filtering water and wearing a particle mask.

Trace element analysis at ultra-high elevations is a very difficult 

field of study due to the physical and technical factors restricting the 

number of samples collected; therefore, limited research is available for 

comparison. Future research needs to be conducted in other remote 

high-altitude settings around the world to develop a comprehensive 

database to assess the scope and range of trace element transport and 

to determine if they are derived from natural or anthropogenic sources. 

Ultra-high elevation sites could prove to be the “catcher’s mitt” for depo-

sition and provide the ideal laboratory to assess impact.
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Black carbon, also called pyrogenic C (Cpyr), is a particulate, graphitic 

form of carbon produced during the incomplete combustion of bio-

mass or fossil fuels or is a residue of it (Novakov, 1984; Goldberg, 1985). 

Char and charcoal, now called biochar, still show some morphological 

and chemical features of the charred material, which can be identified by 

scanning electron microscopy (SEM) (Skjemstad et al., 1996). In contrast, 

soot forms by condensation of burning products during combustion. 

Therefore, the term black carbon describes a continuum of substances 

with decreasing O/C ratio, ranging from char and charcoal (O/C = 0.4) 

to soot (O/C = 0.2) and graphitic C (Hedges et al., 2000; Hammes et al., 

2007) (see Fig. 1). Aromaticity is a key structural feature of BC, as studied 

by solid state 13C nuclear magnetic resonance (NMR) (Skjemstad et al., 

1996; Schmidt and Noack, 2000).

The majority of BC can be found in the clay- and silt-sized light 

fraction of soil organic matter (SOM < 1.6 to 2.0 Mg m−3) (Glaser and 

Amelung, 2003; Rodionov et al., 2006).

The relevance of pyrogenic carbon arises from its ubiquitous distribu-

tion in ecosystems and soils, its persistence in soils and sediments, and 

its function as an adsorber for nutrients and contaminants, as well as its 

role as a historical marker wherever we find it. Black carbon is released 

in high amounts. Crutzen and Andreae (1990) estimated the global 

annual formation rate of vegetation fire residues (coarse grain BC) to be 

200 to 600 Tg, while Kuhlbusch and Crutzen (1995) calculated 50 to 216 

Tg/year but projected that, depending on the formation temperature, it 

could be double. These coarse fire residues (charcoal pieces) are mostly 

not transported from the fire site but incorporated in the soil and contrib-

ute to the BC pool in soils. The soil BC pool has still not been assessed 

globally. It is interesting to note that fossil fuel burning and vegetation 

fires contribute in more or less equal amounts to BC stored dynamically 

in the atmosphere, which is approximately 1.2 Tg. The emission rates for 

aerosol BC from vegetation fires and fossil fuel burning are 5 to 6 and 6 

to 9 Tg/yr (Kuhlbusch, 1998), with oceans and soils as the terminal stor-

ages for BC.

Persistence in Soils
Black carbon is very stable in soils, but it is not inert. It has frequently 

been found in the very old fractions of SOM, for example, up to 7000 yr 

old for an Amazonian Anthrosol (Liang et al., 2008) and up to 2000 yr old 

for Mediterranean soils (Thinon, 1978). The turnover times for BC have 

been estimated to be some thousands of years (Preston and Schmidt, 

2006). Contrary to these findings, BC was degraded within tens and hun-

dreds of years under laboratory conditions (Shneour, 1966; Hamer et 

al., 2004; Hammes et al., 2008). In well-aerated soils from the subtropics 

BC shows half-life times in the same order (Bird et al., 1999). That con-

forms to our understanding of microbial decomposers and their ability 

to decompose everything organic at least co-metabolically, as long as 

temperature, humidity, and aeration are comfortable and primary food is 

available. It is widely accepted that BC must be degraded to some extent 

(Schmidt and Noack, 2000; Schmidt, 2004). Otherwise we would find the 

corresponding ancient BC in thick layers in our soils.
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abstract

Black carbon (BC), a graphitic, particulate form of carbon that results from the incomplete 
combustion of organic material, is a significant part of the soil organic carbon (SOC) in soils 
worldwide. This article gives an overview on the sources and the behavior of soil BC, discusses 
the different analytical approaches for BC, and reviews literature on its distribution in soils. 
Black carbon is released by biomass and fossil fuel burning in the form of soot and char and 
charcoal. It is ubiquitous in the atmosphere and in soils. In soils, BC is more persistent and less 
reactive than other SOC constituents. It has turnover periods ranging from some decades to 
some thousands of years. Its stability, together with chemical and physical features such as 
high surface area and porosity, has important implications for nutrient storage, contaminant 
adsorption, and bulk SOC stability, as well as for global climate change mitigation. Biochar BC 
production and storage in soils are discussed as very promising carbon sequestration strate-
gies. Because BC includes a continuum of materials, a wide array of analytical approaches 
has been developed for its investigation, including optical, chemical, and thermal methods. 
This makes it difficult to compare different studies and to draw a big picture of BC distribu-
tion. Black carbon assessment in soil survey would be valuable from a use and management 
perspective, might help identify the factors and processes affecting BC in soils, and possibly 
provide an important clue in understanding the global carbon cycle.


