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ABSTRACT

Pairwise multiple comparisons of treatment means
are appropriate in the statistical analysis of some agro-
nomic experiments. This paper includes a review and
definitions of the types and frequency rates of statistical
errors with regard to pairwise multiple comparisons. Of
the 10 pairwise multiple comparisons procedures de-
scribed herein, the least significant difference is the pro-
cedure of choice when the appropriate contrasts among
treatments each involve only two of the treatment
means. This choice is based on considerations of error
rates, power, and correct decision rates as well as sim-
plicity of computation.

Additional index words: Duncan’s multiple range
test, Least significant difference, Statistical analysis,
Waller-Duncan k-ratio t test.

E OBJECTIVE of a well-designed experiment is

to answer questions of concern to the experiment-
er. The most appropriate and most informative method
of statistical analysis of the data will be that procedure
which provides the best answers to those questions.
Most designed experiments include treatments selected
for the purpose of answering specific questions. Fre-
quently these specific questions are best answered
through the computation and testing of those meaning-
ful, single-degree-of-freedom linear contrasts that were
“‘built-in’’ to the experiment when the particular treat-
ments were chosen by the experimenter. In many cases
the set of linear contrasts will be orthogonal as well as
meaningful. For examples of experiments for which the
design and objectives suggest meaningful, perhaps
orthogonal, single-degree-of-freedom linear contrasts to
explain variation among treatments, see Bryan-Jones
and Finney (1983), Carmer (1978), Chew (1976, 1977),
Dawkins (1983), Johnson and Berger (1982), Little
(1978, 1981), Mead and Pike (1975), Nelson and
Rawlings (1983), or Petersen (1977).

There are, on the other hand, some experiments that
the experimenter designs with the intent of examining
the differences between members of each pair of treat-
ments. Common examples of such a situation are per-
formance trials to evaluate sets of crop cultivars. Other
examples include herbicide, fungicide, insecticide, and
other pesticide screening trials. Here pairwise compari-
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sons may be sensible and meaningful, and it may well be
a logical part of the experimental plan to perform them.

The purposes of this paper are: 1) to review and de-
fine the types and frequency rates of statistical errors
with regard to pairwise multiple comparisons, 2) to de-
scribe a number of the pairwise multiple comparisons
procedures that are available, and 3) to suggest that the
least significant difference is always the procedure of
choice when the appropriate contrasts among treat-
ments each involve only two of the treatment means.
We hope readers will find this presentation less confus-
ing and more satisfactory than those given in statistical
textbooks oridinarily used in teaching courses on the de-
sign and analysis of agronomic experiments.

TYPES AND RATES OF STATISTICAL ERRORS
FOR PAIRWISE COMPARISONS

Let the true difference between two treatment means be
represented by:

where 7; and 7; represent the true effects of the ith and jth
treatments, respectively. With the use of a pairwise multiple
comparisons procedure one of three possible decisions is made
concerning each pair of means; i.e., each §;. The possible de-
cisions are: 1) §; < 0; or 2) §; = 0; or 3) §; > 0.

The correctness of a particular decision based on a pair of
observed means depends on the true or parameter values of the
means. The latter are, in general, unknown. Several kinds of
incorrect decisions or errors are possible (Table 1). If the
parameter values of two means are really equal, i.e., §; = 0,
reaching decision 1 or 3 on the basis of observed means results
in a Type I error, which occurs when a true null hypothesis is
rejected. On the other hand a Type 11 error occurs when a false
null hypothesis is not rejected. Thus reaching decision 2 on the
basis of observed means results in a Type II error if the two
true means really are not equal, i.e., §; # 0. Still another kind
of error is committed if decision 1 is reached, but decision 3 is
actually correct, or if decision 3 is reached, but decision 1 is
actually correct. These are called reverse decisions or Type III
errors. In summary then, for any given pair of treatments, the
experimenter will either make the correct decision or one of the
three types of errors.

Table 1. Types of statistical errors possible when comparing two
observed treatment means.

Decision based

True situation
on observed

means 6]3 <0 61] =0 éij >0
1. Bij <0 Correct decision Type 1 error Type 111 error
2.6 j=0 Type ll error Correct decision Type 1l error
3. 6ij >0 Type Il error Type L error Correct decision




20 JOURNAL OF AGRONOMIC EDUCATION, Vol. 14, Spring 1985

When experimenters select a significance level, «, they are,
in effect, stating the frequency of Type I errors that they are
willing to accept. There are at least two ways of expressing this
frequency or Type I error rate. The comparisonwise Type I
error rate is defined as:

_ No. of Type I errors
€ ™ No. of comparisons for which the true difference = 0

(07

while the experimentwise Type I error rate is defined as:

No. of experiments with one or more Type I errors

(o]

When considering the experimentwise error rate, it is helpful
to state the family of contrasts to which the experimentwise
error rate is applicable. The definition given above applies to
the family consisting of the set of all pairwise comparisons
among the treatments. Other families are possible; for ex-
ample, the family of interest might be a set of meaningful
orthogonal linear contrasts among the means. In another
situation, the family might be the set of contrasts which com-
pares each treatment to a control or check or standard. In cer-
tain cases, the largest conceivable family might be appropriate;
i.e. the family which consists of the set of all possible contrasts
among the treatment means.

For a family of ¢ = (p — 1) orthogonal contrasts among p
treatments the comparisonwise and experimentwise Type I
error rates are related as follows:

ag = 1 —(1 —(Xc)q;

ac=1-(1 - ap).

Thus with p = 15 equal treatments, g = 0.5123 if o = 0.05.
On the other hand ac = 0.00365 if oy = 0.05. The meaning
is that, when each of 14 orthogonal contrasts are tested at the
5% significance level, the probability that at least one of the 14
contrasts will be incorrectly declared significant is 51.23%. 1If
the researcher wished this probability to be only 5%, the test
of each individual contrast would have to be performed at the
0.365% significance level.

In the case of pairwise multiple comparisons among p treat-
ment means the family consists of the m = p(p — 1)/2 non-
orthogonal contrasts between the members of pairs. The corre-
sponding relationships between error rates are:

ag =1 — (1 — )™ < mag;

aczl =1 —ap™> ag/m.

Thus with p = 15 equal treatments m = 105 and o < 0.9954
if ac = 0.05, and ac > 0.000488 if ag = 0.05. More exact
values can be determined from tables provided by Harter
(1957) and Harter et al. (1959). For example, if the p = 15
equal treatments are replicated four times in a randomized
complete block design, o is equal to about 0.78 when o =
0.05 and a¢c = 0.000834 when o = 0.05.

The experimentwise Type I error rate is thought to be of
considerable importance by some statisticians and researchers
(e.g., Gill, 1973), but its use deprives the experimenter of the
opportunity to select a comparisonwise significance level in ac-
cordance with his or her own assessment of the seriousness of
Type I and 1II errors relative to the seriousness of Type 1l
errors.

Comparisonwise and experimentwise expressions can be
developed for both Type II and Type III error rates, but gener-

E = No. of experiments with at least one true difference = 0"

ally these are expressed only on a comparisonwise basis, if they
are expressed at all. Thus the comparisonwise Type II error
rate is:

_ No. of Type Il errors
~ No. of comparisons for which the true difference # 0

Bc

and represents the comparisonwise probability of failure to re-
ject a false hypothesis of no difference between two means.
Similarly, the comparisonwise Type III error rate is:

_ No. of Type III errors
¥¢ = No. of comparisons for which the true difference # 0

and represents the comparisonwise probability of concluding
either that §; > 0 when in fact §; < 0, or that §; < O when in
fact 6; > 0.

The power of a statistical test of a null hypothesis is usually
defined as the probability of rejecting the hypothesis when the
hypothesis is false. Thus, for a pairwise comparison the com-
parisonwise power is equal to [I — 8] if §; # 0. When the
magnitude of §; is very large the power approaches a value of
1.0; on the other hand, as the magnitude of §; approaches 0.0,
the power approaches the value of «-. The comparisonwise
correct decision rate for a pairwise comparison is equal to [1 —
ac]if §; = 0, and is equal to [1 — 8¢ — vc]if 8; # 0.

PAIRWISE MULTIPLE COMPARISON
PROCEDURES

For some experiments sensible treatment contrasts are the
pairwise comparisons among the observed means. As men-
tioned earlier, examples of such experiments include trials for
evaluation of the performance of cultivars, or herbicides,
fungicides, insecticides, or other pesticides. Unfortunately for
researchers conducting such experiments, statisticians have not
been able to reach general agreement as to which of several
suggested procedures is the best for researchers to apply when
pairwise multiple comparisons are appropriate.

Our Recommendation: The Least
Significant Difference

Use of the least significant difference, LSD, dates back to R.
A. Fisher and the early days of analysis of variance. The LSD
procedure is really only a short-cut version of performing a
series of t tests on all the possible pairs of treatment means.

A t test of the difference between the ith and jth observed
treatment means can be computed as

t=(Y - Y;)/s

where s, is the standard error of the difference between the two
means. Instead of calculating the individual t values for all
possible pairs of means and comparing each to the appropriate
table value of t, the LSD is computed as that difference be-
tween two means which equals the table value of t multiplied
by s4. Thus the ordinary LSD, which is often referred to as the
multiple t test, the unprotected LSD, or the unrestricted LSD,
is computed as:

LSD = t(C(, f)Sd

where t (a, f) is the tabular value of ‘‘Student’s t’’ for the
selected significance level, «, and the degrees of freedom, f,
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associated with the standard error of the difference between
two means, sy. Observed means which differ by more than the
LSD value are said to be significantly different.

Some statisticians have criticized the LSD procedure on the
grounds that, if all the true treatment means are equal, the
probability of falsely declaring significant the difference
between the largest and smallest observed means (i.e., commis-
sion of a Type I error) is greater than « when the experiment
includes more than two treatments. In other words the experi-
mentwise Type I error rate associated with the LSD is greater
than the comparisonwise Type I error rate which is the experi-
menter’s selected significance level, «. If p = 15 equal treat-
ments are replicated four times in a randomized complete
block design the experimentwise error rate, o will be about
0.78 when the LSD is applied at a significance level with o =
Qe = 005

R. A. Fisher suggested that the experimenter could protect
against high experimentwise error rates by performing a pre-
liminary F test of treatment differences based on the ratio of
the among treatments mean square divided by the error mean
square. If the computed F value is declared significant, indi-
cating real treatment effects, the experimenter computes the
usual LSD; however, if the F value is not significant, indicat-
ing a lack of real differences among the treatment means, the
experimenter makes no pairwise comparisons among the
means, thus eliminating the possibility of making Type I errors
in that particular experiment. This procedure is variously
known as Fisher’s least significant difference or FLSD, the
protected LSD, or the restricted LSD. The critical difference is
computed as:

FLSD = LSD = t («, f) sg,
if the computed F ratio is significant, or
FLSD = o,

if the computed F ratio is not significant.

The requirement of a significant F ratio results in the reduc-
tion of the comparisonwise Type I error rate to a value less
than the stated significance level of the LSD. Empirical
demonstrations of this are provided by Carmer and Swanson
(1971, 1973) and Bernhardson (1975). A formalized mathe-
matical proof is given by Smith and Han (1981).

In deciding whether to use the ordinary LSD or the re-
stricted LSD, the experimenter needs to consider the question:
‘““How likely is it that all p treatments in my experiment have
exactly the same true means?’’ If it is quite unlikely that all p
treatment means are equal, there may be little or no point in
requiring the analysis of variance F ratio to be significant. On
the other hand, if the experimenter has evidence that all p
treatment means might be expected to be equal, use of the re-
stricted LSD may be a good choice.

Consider two examples. In one case, a forage breeder wishes
to compare yields of eight genetically similar alfalfa (Medicago
sativa L.) clones. Since they are genetically similar and the
overall hypothesis tested by the analysis of variance F ratio
might be true, the breeder decides to use the restricted LSD.
The second example concerns a performance trial in which
there are 250 commercial corn (Zea mays L.) hybrids produced
by 18 different seed companies. In this case a hybrid produced
by one company might be genetically identical to a hybrid pro-
duced by another company, but it is impossible to imagine that
all 250 hybrids are identical. Thus the overall hypothesis tested
by the analysis of variance F ratio is known to be false before

the trial even starts. For an experiment like this, a nonsig-
nificant F value is more apt to result from poor precision due
to poor design and/or poor conduct of the experiment than
from a true null hypothesis. If so, the experimenter should be
much more concerned about improving the precision of the ex-
periment than about whether to use the restricted LSD rather
than the ordinary LSD.

The least significant difference is based on a comparisonwise
Type I error rate and its use is justified when the individual
comparisons within pairs of treatments are the conceptual
units of interest to the experimenter. Carmer and Walker
(1982) described a situation where the experimenter wished to
compare each of 15 cultivars to each of the other 14; i.e., 105
pairwise comparisons were to be made. The experimenter con-
ducted 105 trials with each trial consisting of four replications
of one pair of cultivars. Data from each trial were subjected to
analysis of variance, and the LSD for comparing the two
means was calculated at the 5% significance level. A statisti-
cian later advised the experimenter to repeat the study using
four replications of a randomized complete block design with
15 treatments. The experimenter was subsequently criticized
by peer scientists for using the LSD for this second experiment
because it resulted in an experimentwise error rate, ag, of
about 0.78. However, as Carmer and Walker (1982) point out,
the experimentwise error rate for the first study involving 105
independent trials had an expected value of

ag = 0.9954 = [1 — (0.95)'*"].

Based on this fact, it is quite clear that if the individual com-
parison, and not the experiment, is the conceptual unit of
interest, then the experimenter should not be penalized for
using an efficient experimental design; the penalties imposed
by use of an experimentwise error rate should not be inflicted
upon the experimenter because he/she used a design with 60
experimental units (15 cultivars x 4 replicates) rather than 105
trials occupying 840 experimental units. Duncan and Brant
(1983) state: “‘In the simultaneous testing of m comparisons in
one experiment, the objectives are the same as if each test were
being made in a separate experiment.’’ O’Brien (1983) has also
written in favor of comparisonwise error rates. The penalties
of using experimentwise Type 1 error rates include larger
critical values than the LSD with a resultant larger Type II
error rate, smaller power, and smaller correct decision rate
when §; # 0. Thus in addition to its simplicity of calculation
the LSD is a more powerful technique that is more sensitive to
treatment effects.

Through a simulation study Carmer (1976) demonstrated
that the choice of significance level for the LSD does directly
influence the comparisonwise Type 11 and Type I1I error rates
for true differences of given magnitudes. Analytically these
rates may be expressed as:

B¢ = Probability
{ —[t(ac,§) + 6;/04) <t < [t(ac,f) — §;/04]}
and
Yc = probability [t > t(ac,f) + 6;/04],
where g4 is the true standard error of the difference between
the two treatment means.

For the specific case of corn hybrid performance trials in
Illinois Carmer (1976) provided an assessment of the serious-
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ness of Type I and Type III errors relative to Type II errors;
through minimization of the weighted average losses due to all
three kinds of errors the optimal significance level was found
to be in the range of ac = 0.20 to 0.40. For other kinds of ex-
periments researchers need to consider the relative seriousness
of the several types of statistical errors and then use the results
of such assessments in selecting significance levels which
minimize losses due to such errors.

Regardless of the specific value of « > 0 which is selected,
the probability of committing at least one Type I error will in-
crease as the number of comparisons for which §; = 0 in-
creases. Put another way, this simply means that the more de-
cisions a decision-maker makes, the more likely at least one de-
cision will be wrong. To us, this idea seems only reasonable.

Other Procedures: Some Worse than Others

The invention of experimentwise Type I error rate by
theoretical statisticians has spurred seemingly never-ending re-
search by a generation or more of mathematical statisticians in
an attempt to find a procedure with more attractive properties
than the LSD. This effort has resulted in a large number of
procedures, some of which are useful if the experiment rather
than the individual comparison is the conceptual unit of
interest to the experimenter.

Family of All Pairwise Comparisons: Tukey’s Test

In response to the previously mentioned criticism of the high
experimentwise error rate associated with the ordinary LSD, J.
W. Tukey developed a procedure based on the researcher’s
selection of an experimentwise Type I error rate. This proce-
dure is known as Tukey’s w procedure, Tukey’s Significant
Difference or TSD, and the Honestly Significant Difference or
HSD. The critical difference is computed as:

w = TSD = HSD = Q(a, p, f) s,/~2

where Q (o, p, f) is the appropriate value from a table of
studentized ranges for the selected significance level, «, with p
treatments and f degrees of freedom associated with the esti-
mate of experimental error.

For p > 2 the critical value of Tukey’s procedure is larger
than the LSD, but forp = 2:

LSD = w = TSD = HSD
= Q(a, p, ) 54/V2 = t (o, ) 5.

Performance of Tukey’s procedure at & = 0.05 results in,
on the average, the commission of at least one Type I error in §
out of 100 experiments when the p true treatment means are all
equal. With p = 15 equal treatments replicated four times in a
randomized complete block design the comparisonwise error
rate will be o = 0.000834 when Tukey’s procedure is applied
at a significance level of « = o = 0.05. That is, Tukey’s test
at the 5% level gives the same result as if the LSD was per-
formed at the 0.0834% level.

The experimentwise error rate employed with Tukey’s
procedure applies to the family of all pairwise comparisons
among the treatment means.

Family of Comparisons of All Treatments
with a Control: Dunnett’s Test

In some experiments the family of comparisons of interest is
not the set of all possible pairwise comparisons. In Florida

sugarcane (Saccharum spp.) performance trials, for example,
it is common to compare each cultivar being evaluated to a
standard or check cultivar rather than to each other. Some
statisticians argue that in such a case there is need for a pro-
cedure based upon an experimentwise Type I error rate for the
family of q = (p ~ 1) comparisons between each cultivar and
the check. Dunnett (1955, 1964) has devised a procedure to do
this and prepared special tables of Dunnett’s t for experiment-
wise Type I error rates of o = 0.01 and 0.05. The critical
value for Dunnett’s test is computed as:

DSD = t (Dunnett, o, q, f) s4

where t (Dunnett, «, q, f) is the appropriate tabulated value
for the selected significance level, o, with q = (p ~ 1) treat-
ments excluding the standard and f degrees of freedom associ-
ated with the estimate of experimental error.

Performance of Dunnett’s procedure at « = 0.05 results in,
on the average, the commission of at least one Type I errorin §
out of 100 experiments when the @ = (p — 1) treatments are all
equal to the check.

With q = 15 treatments all equal to the standard and repli-
cated four times in a randomized complete block design the
comparisonwise error rate will be ac = 0.00503 when
Dunnett’s procedure is applied at a significance level of a =
ap = 0.05. That is, Dunnett’s test at the 5% level gives the
same result as if the LSD was performed at the 0.503% level.

For those experimenters for whom the conceptual unit of
interest is the experiment Dunnett’s procedure may be accept-
able. However, as with the case of all possible pairwise com-
parisons, if the individual comparison is the unit of interest,
then the LSD should be the procedure of choice. Under no cir-
cumstances should Dunnett’s test be used for making all
possible pairwise comparisons.

Family of All Possible Contrasts: Scheffe’s Test

The significance level selected for Scheffe’s method is also
an experimentwise error rate, but it is based upon a much
different family of comparisons than either Tukey’s or
Dunnett’s procedure. Scheffe’s method applies to the family
of all possible linear contrasts among the treatment means
which, clearly, is a much larger family than the subset of all
possible pairwise comparisons. Consequently, the critical
value for Scheffe’s test is even larger than that for Tukey’s
procedure. The method is quite general in that it is applicable
to any imaginable linear contrast among treatment means, and
is sometimes used as a pairwise multiple comparisons proce-
dure (even though such usage is not recommended). However,
when employed in this latter context, the critical value is:

SSD = IQ. F(ar q, f)]”z Sq

where F (o, q, f) is the tabular F value withq = (p — 1) and f
degrees of freedom at the « significance level. Note that for p
= 2, the SSD and LSD are equal, but for p > 2 the relation-
ship SSD > TSD > LSD holds.

For p = 15 equal treatments replicated four times in a ran-
domized complete block design the comparisonwise error rate
is extremely small; ac = 0.00000546 when Scheffe’s procedure
is applied at a significance level of « = o = 0.05. That is,
Scheffe’s test at the 5% level gives the same result as if the
LSD was performed at the 0.000546% level.

While Scheffe’s procedure is probably the least-suited
method for pairwise multiple comparisons, or for other linear
contrasts specified prior to the conduct of the experiment, its
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conservative nature and basis of dealing with the family of all
imaginable linear contrasts give the procedure some appeal for
those situations where the investigator is involved in ‘‘data
snooping,”’ exploratory data analysis, or looking at contrasts
suggested by the data; in these cases the appropriate standard
error associated with the contrast of concern would be
substituted for sy in the calculations. While the use of ac =
0.05 may be unacceptable in these cases of data selection (as
opposed to a priori contrasts), it is arguable whether a
comparisonwise error rate as low as that associated with
Scheffe’s procedure is either necessary or desirable.

The Waller-Duncan Bayesian k-ratio t Test:
The Bayes Least Significant Difference

Efforts by Duncan and his students subsequent to his de-
velopment of Duncan’s multiple range test have helped to
clarify the multiple comparisons problem. Their approach re-
quests the experimenter to give some thought to the “‘costs’’
associated with the making of the several types of statistical
errors and requires the experimenter to select a value of k
which is a ratio that quantifies the seriousness of Type I and III
errors relative to Type II errors. Duncan (1965) asserted that
values of k-ratios equal to 500, 100, and 50 are roughly com-
parable to significance levels of « = 0.01, 0.05, and 0.10, re-
spectively. Carmer (1976) indicated that k-ratios equal to 20, 7,
and 2 correspond to significance levels of & = 0.20, 0.40, and
0.80, respectively. The theoretical development of the proce-
dure by Waller and Duncan (1974) includes use of Bayesian
statistical principles in the examination of prior probabilities
of decision errors. Because of its Bayesian properties and its
similarities to the least significant difference, the procedure is
often known as the Bayes least significant difference. The
single-valued critical difference is the product of the standard
error of the difference between two treatment means and a
quantity called the minimum average risk t value. This t value
differs from Student’s t, but depends, instead, upon the mag-
nitude of the analysis of variance F value calculated to test
overall treatment effects and upon the particular k-ratio
selected as well as upon the treatment and error degrees of
freedom. For pairwise comparisons the critical value for the
Bayes least significant difference is:

BLSD =t(k,F, f, q)sq

where t (k, F, f, q) is the tabulated minimum average risk t
value for the selected k-ratio, the numerical value of the com-
puted F ratio, and the degrees of freedom, f and q, for error
and treatments, respectively.

Tables of minimum average risk t values for k-ratios equal
to 500, 100, and 50 are given in Waller and Duncan (1969);
these tables turned out to contain errors and corrected tables
appeared later (Waller and Duncan, 1972). Waller and Kemp
(1975) described a computer program which computes the
minimum average risk t value for a specified combination of k,
F, f,and q.

An application of the Bayes least significant difference to
means from an agronomic experiment by Smith (1978) illus-
trates the effect that the magnitude of the analysis of variance
F value has on the BLSD. In his example the FLSD = 436 and
the HSD = 639; with a F value of 4.43 the BLSD = 445 and is
comparable to the FLSD. However, with a F value of 1.4, the
BLSD = 600 and is nearly equal to the HSD. This example
demonstrates the property of the BLSD which allows it to
avoid Type 1 errors when the F value is small and to avoid
Type 1l errors when the F value is large.

Table 2. Effects of the magnitude of the computed F value on the
minimum average risk t value and comparisonwise error rate.

Computed Minimum avg. Comparisonwise

F value risk t value error rate, ac
0.968 3.52 0.0011
1.935 2.66 0.0110
3.870 2.12 0.0400
5.805 1.99 0.0531
7.744 1.93 0.0604
9.675 1.90 0.0643

19.350 1.84 0.0728

Perhaps the most essential difference between the ordinary
LSD and the BLSD is that with the former procedure the
experimenter selects the significance level at which to test treat-
ment differences, while with the BLSD the observed data are
allowed to have a large influence on the comparisonwise error
rate. For example, with p = 15 equal treatments replicated
four times in a randomized complete block design, the
ordinary LSD will have o = 0.05 when the LSD is performed
at the 5% significance level. But for the BLSD with a k-ratio
of 100, the value of ac will depend on the value of the mini-
mum average risk t value which, in turn, depends on the mag-
nitude of the analysis of variance F value, as is shown in Table
2. For the FLSD performed at the 5% significance level, the
value of the comparisonwise error rate is 0.05 for all computed
F values greater than the appropriate tabulated F value, (1.935
in this case), but for non-significant F values the value of ac =
0.00. For the BLSD, however, the value of o increases as the
computed F value increases. Note that for F = 1.935 the com-
parisonwise error rate would be o = 0.05 for the FLSD but
ac = 0.0110 for the BLSD.

In our opinion the primary value in the development of the
BLSD by Duncan and his colleagues has been to draw the re-
searcher’s attention to the importance of assessing the relative
seriousness of the various types of statistical errors. As was
mentioned earlier in this paper, Carmer (1976) has shown that
such assessments can be used to determine an optimal sig-
nificance level for the LSD. With the LSD the researcher has
the opportunity to assess the relative seriousness of statistical
errors and to manage the risks associated with them through
his or her selection of a significance level. With the BLSD, on
the other hand, through selection of the k-ratio the researcher
only assesses the risks of statistical errors; the data, rather than
the researcher, determine the choice of significance level for
management of the risks.

Other Procedures: Multiple Range Tests

The Student-Newman-Kuels and the Duncan multiple range
tests operate in such a manner that, for the family of all pair-
wise comparisons, the experimentwise Type 1 error rate is
intermediate between that obtained with the LSD and that ob-
tained with the TSD.

While the LSD and TSD each require the calculation of a
single critical value, the Student-Newman-Kuels procedure in-
volves the computation of (p — 1) critical values:

SNK; = Q(a, i, ) s4/V2

fori =2,3,...,pand Q (o, i, f) is the appropriate value from
a table of studentized ranges. The value of SNK, equals the
LSD value while SKN, equals the TSD value; for intermediate
values of i, SNK; is intermediate to the LSD and TSD.

The SNK, like the TSD, utilizes ordinary studentized ranges
which are tabulated, for example, in Table I1.2 of Harter et al.
(1959). For Duncan’s multiple range test, however, special
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studentized ranges witho; = [1 — (1 — @)~ fori = 2,3,...,
p, are employed.

Tables of the special studentized ranges were first presented
by Duncan (1955) and later recomputed by Harter et al.
(1959). For Duncan’s multiple range test the (p — 1) critical
values are calculated as:

DMI{’I‘l = Q (ai, i D Sd/‘\/i

fori = 2,3,...,p. Except fori = 2, values of DMRT, are
larger than the LSD, but smaller than the TSD, and smaller
than corresponding SNK; values.

The present authors recommend that neither DMRT, nor
SKN, nor any other muitiple range procedures ever be used for
comparisons among treatment means. We have several
reasons. Perhaps the most important is that if the experiment-
er firmly believes that the experiment is the conceptual unit of
interest, then appropriate procedures are Tukey’s test for
pairwise comparisons, Dunnett’s test for comparisons of
individual treatments with the control, and Scheffe’s test for
contrasts suggested by looking at the data. On the other hand,
if the experimenter considers the individual comparisons to be
the conceptual units of interest, then the LSD is the appro-
priate procedure. The multiple range tests require multi-valued
critical values, which complicate the presentation of results,
and are less powerful and less able to detect differences than
the LSD. With multiple range tests the difference between two
treatments required for significance depends on, p, the
number of treatments in the experiment. As Carmer and
Walker (1982) state, it does not make much sense to think that
the true difference between two treatments depends in any way
on what other treatments are included in the experiment. Even
Duncan (1970) has stated that there are other procedures with
more logical foundations than his 1955 multiple range test,
DMRT. One other disadvantage of multiple range tests is that
their use is not appropriate in the construction of confidence
intervals; on the other hand procedures which employ only a
single critical value are easily used in the construction of con-
fidence intervals.

Still Other Procedures

Kirk (1982) discusses several other procedures for testing
nonorthogonal contrasts among treatment means. One of
these is referred to as Dunn’s multiple comparisons procedure
or the Bonferroni t procedure. For m contrasts the experiment-
wise Type 1 error rate cannot exceed the sum of the m com-
parisonwise error rates; i.e.:

ap < L ag,

fori =1, 2, ..., m. Therefore, if each of the m contrasts is
tested at the oc = «/m level of significance, the experiment-
wise Type I error rate cannot exceed «. For pairwise compari-
sons, the critical value for Dunn’s procedure is:

LSD =t (a/m, f) s4

where t (a/m, f) is the absolute value of Student’s t with f de-
grees of freedom which will be exceeded due to chance with
probability «/m. Since t values for ac = a/m will not general-
ly be found in tabulations of Student’s t for « = 0.01 or 0.05,
special tables have been prepared (Dunn, 1961, and Dayton
and Schafer, 1973).

A modification to Dunn’s procedure has been proposed by
Sidak (1967) who utilized the property that the experimentwise

error rate is never greater than [1 — (1 — ac)™]. Instead of
testing each contrast at ac = a/m, Sidak’s modification tests
each contrast at ac = [1 — (1 — a)"™]. Kirk (1982) calls this
modification the Dunn-Sidak procedure; for pairwise com-
parisons the critical value is:

LSD = t(1 = [1 — a]’™ f)s,

where t (1 — [1 — «]”m, f) is the absolute value of Student’s t
with f degrees of freedom which will be exceeded due to
chance with probability [1 — (1 — «)/™]. Again, if « = 0.01
or 0.05, the value of ac = [1 ~ (1 — «)"™] will not generally
be found in tabulations of Student’s t. A table of critical
values has been presented by Games (1977). The critical values
of t for the Dunn-Sidak procedure are always smaller than
those for the Dunn procedure; tables for both procedures are
given in Kirk (1982).

The use of Dunn’s procedure is equivalent to performing the
ordinary LSD at the o = «/m level of significance, while the
Dunn-Sidak procedure is equivalent to performing the
ordinary LSD at the ac = [I — (1 — a)"™) significance level.

According to Kirk (1982), neither procedure is recom-
mended for pairwise comparisons, but, if an experimenter
considers the experiment to be the conceptual unit of interest,
either procedure would be appropriate for a specific set of
planned, but non-orthogonal, contrasts among means. On the
other hand, if the individual contrasts are the conceptual units
of interest, the use of the usual Student’s t tests or the equiva-
lent single degree of freedom F tests is appropriate.

Another Approach: Cluster Analysis of
Treatment Means

An alternative to the use of pairwise multiple comparisons
procedures is a technique known as cluster analysis. For some
researchers cluster analysis is attractive because, unlike pair-
wise multiple comparisons, it results in non-overlapping, dis-
tinct, mutually exclusive groupings of the observed treatment
means. One method of cluster analysis which uses a divisive
criterion for subdividing a set of means into groups was pro-
posed by Scott and Knott (1974); use of the Scott-Knott proce-
dure in agricultural research has been suggested by Chew
(1977), Gates and Bilbro (1978), and Madden et al. (1982).
Illustrative examples are provided in each of these papers.

Willavize et al. (1980) and Carmer and Lin (1983) have ex-
pressed a need for caution in applying the Scott-Knott or other
clustering criteria to experiments where use of the LSD is ap-
propriate. In both papers the concerns raised are based on the
results of simulation studies. In a comparison of the Scott-
Knott and three agglomerative clustering criteria, Willavize et
al. (1980) found that Type I error rates with the clustering pro-
cedures were often considerably higher than the stated sig-
nificance level and often appreciably higher than with the re-
stricted LSD. On the other hand, the clustering techniques
produced higher correct decision rates than did the LSD for
small true relative differences between means (§;/¢ < 1.5),
while all procedures performed quite well for large differences
(6;/¢ > 2.2). Carmer and Lin (1983) compared Type I error
rates for the Scott-Knott and three divisive criteria based on F
tests. Again, cluster analysis Type I error rates were found to
be appreciably higher than with the LSD.

Another disconcerting finding about the clustering proce-
dures is that, in both studies, evidence was presented which in-
dicates that the Type I error rate associated with a particular
clustering method is determined more by the precision of the
experiment than by the selected significance level. Willavize et
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al. (1980) state that a cluster analysis procedure may be appli-
cable in either of two cases: 1) when a significance level in the
range a = 0.20 to 0.40 is justified on the basis that Type 1
errors produce little harm, or 2) when the experiment has been
performed with great precision. Thus the application by
Madden et al. (1982) of the Scott-Knott method to maize
dwarf mosaic virus susceptibility data from ten dent corn in-
breds may be a much more appropriate use of the technique
than applying it at the traditional 5% significance level to
group corn hybrids on the basis of their yield performance.

A final comment about cluster analysis methods is that the
computations are considerably more numerous and complex
than for the single critical value of the LSD.

UNEQUAL REPLICATIONS AND/OR
UNEQUAL VARIANCES

For a randomized complete block design the standard error

of the difference between two treatment means is calculated as -

the square root of two times the error mean square divided by
the number of replications; i.e.:

sq = [2s%/1]"?

where s? is the estimated error variance and r is the number of
replications. If the ith and jth treatments have different num-
bers of replications, the standard error of the difference
between the ith and jth means is:

sd(ij) = [S’/ri + S’/rj]‘“

and can be readily utilized in the formulae for either the LSD,
TSD, or BLSD.

If the ith and jth treatments have unequal variances or both
the variances and the numbers of replications are unequal, the
standard error of the difference between the ith and jth treat-
ment means becomes:

Sd(ij) = [Siz/ri + sz/rj]”z
with f’ degrees of freedom, where
£ = [si/r; + sy/nl/ s/ i) + (sj/0if)]

where f; and f; are the degrees of freedom associated with s’
and sj’, respectively. The calculation of f’ is based on Satter-
thwaite’s (1946) approximation to the degrees of freedom
associated with a linear combination of estimates of variance
components. The pairwise comparison between the ith and jth
treatment means then has critical differences as follows for the
LSD, TSD, and BLSD procedures:

LSD(ij) = t (a, f') s
TSD(ij) = Q (e, p, ) 84y)
BLSD(j) = t(k, F, f’, @) s4).
CONCLUDING REMARKS

Ten multiple comparisons procedures have been de-
scribed in preceding sections. Of these, the least signifi-
cant difference is the most appropriate for any compari-
son involving only two treatment means. Such compari-
sons are logical when there is no structure in the set of

treatments (e.g., when the treatments are cultivars, or
herbicides or other pesticides). The least significant dif-
ference is also the most appropriate for comparisons be-
tween individual treatments and a control or standard.

Most experiments, however, involve treatments which
do have structure (e.g., levels of quantitative controlled
factors such as rates of fertilizer, row spacings, plant
densities, or dates or application). For these
experiments the use of meaningful, single degree of free-
dom linear contrasts provides a statistical tool more
powerful than any pairwise multiple comparisons proce-
dure, including the least significant difference.
Meaningful linear contrasts are more powerful (i.e.,
better able to detect treatment effects), because they
usually involve a linear combination of more than two
treatment means, while only two treatment means are
included in a pairwise comparison.

Finally, a word of caution may be helpful in regard to
experiments involving several rates of each pesticide or
other chemical material being evaluated in a trial. Re-
gression analysis of trends will be more informative and
statistically more sound for evaluation of the response
to differing rates of a particular pesticide or other
chemical material. A pairwise multiple comparisons
procedure is not the best statistical technique for
interpreting the variation in response due to differing
rates of application. Pairwise comparisons between two
materials applied at equivalent rates may be meaning-
ful, but for differing rates within a material the response
trend is of main interest and concern.
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